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FOREWORD

This document is one of sixteen sections that comprise the final
report prepared by the Minneapolis-Honeywell Regulator Company for the
National Aeronautics and Space Administration under contract NASw-563.
The report is issued in the following sixteen sections to fecilitate
updating as progress warrants:

1541-TR 1

1541-TR 2

1541-TR 3
1541-TR 4
1541-TR 5

1541-TR 6

1541-TR 7
1541-TR 8
1541-TR 9

1541~-TR 10

1541-TR 11

15L41-TR 12
1541-TR 13
1541-TR 14
1541-TR 15

1541-TR 16

Sunmary

Control of Plants Whose Representation Contains Derivatives
of the Control Variable

Modes of Finite Response Time Control
A Sufficient Condition in Optimal Control
Time Optimal Control of Linear Recurrence Systems

Time-Optimal Bounded Phase Coordinate Control of Linear
Recurrence Systems

Penalty Functions and Bounded Phase Coordinate Control
Linear Programming and Bounded Phase Coordinate Control
Time Optimal Control with Amplitude and Rate Limited Controls

A Concise Formulation bf a Bounded Phase Coordinate Control
Problem as a Problem in the Calculus of Variations

A Note on System Truncation

State Determination for a Flexible Vehicle Without a Mode
Shape Requirement

An Application of the Quadratic Penalty Function Criterion
to the Determination of a Linear Control for a Flexible Vehicle

Minimum Disturbance Effects Control of Linear Systems with
Linear Controllers )

An Alternate Derivation and Interpretation of the Drift-Minimum
Principle o ‘

A Minimax Control for a Plant Subjected to a Known Load Disturbance

Section 1 (1541-TR 1) provides the motivation for the study efforts

and objectively discusses the significance of the results obtained.

The

results of inconclusive and/or unsuccessful investigations are presented.
. s . . . . 2 4
Linear programming is reviewed in detail adequate for sections 6, 8, and 16.

It is shown in section 2 that the purely formal procedure for synthe-
sizing an optimum bang-bang controller for a plant whose representation
contains derivatives of the control variable yields a correct result.
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In section 3 it is shown that the problem of controlling m components

(1 <m < n), of the state vector for an n-th order linear constant coefficient

rlant, to zero in finite time can be reformilated as a problem of controlling
& single component.

Section 4 shows Pontriagin's Maximum Principle is often a sufficient
condition for optimal control of linear plants.

Section 5 develops an algorithm for computing the time optimal control
functions for plants represented by linear recurrence equations. Steering
may be to convex target sets defined by quadratic forms.

In section 6 it is shown that linear inequality phase constraints
can be transformed into similar constraints on the control variables.
Methods for finding controls are discussed.

Existence of and approximations to optimal bounded phase coordinate
controls by use of penalty functions are discussed in section 7.

In section 8 a maximum principle is proven for time-optimal control
with bounded phase constraints. An existence theorem is proven. The
problem solution is reduced to linear programming.

A backing-out-of-the-origin procedure for obtaining trajectories for
time-optimal control with amplitude and rate limited control variables is
presented in section 9.

Section 10 presents a reformulation of a time-optimal bounded phase
coordinate problem into a standard calculus of variations problem.

A mathematical method for assessing the approximation of a system by
a lower order representation is presented in section 11.

Section 12 presents a method for determination of the state of a
flexible vehicle that does not require mode shape information.

The quadratic penalty function criterion is applied in section 13 to
develop a linear control law for a flexible rocket booster.

In section 14 a method for feedback control synthesis for minimum load
disturbance effects is derived. Examples are presented.

Section 15 shows that a linear fixed gain controller for a linear
constant coefficient plant may yield a certain type of invariance to
disturbances. Conditions for obtaining such invariance are derived using
the concept of complete controllability. The drift minimum condition i1s
obtained as a specific example.

In section 16 linear programming is used to determine a control function
that minimizes the effects of a known load disturbance.
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TIME-OPTIMAL CONTROL OF
LINEAR RECURRENCE SYSTEMS

¥

By E. B, Lee

ABSTRACT /qﬁn§7‘
An algorithm is developed to compute the time-optimal

control functions for plants represented by linear recurrence
equations. Steering may be to convex sets defined by quadratic
forms. Ko7t
INTRODUCTION

A computational procedure is developed to determine a control
for a linear recurrence equation system so that its solution
passes from an initial point to a prescribed target (set of points)
in the minimum number of stages. This is an approximation to the
time optlimal control assoclated with differential equatlon systems.
The method of solution i1s essentially one proposed by Ho (reference 1)
for systems satisfying differential equations and modified by
Eaton (reference 2). The results, in particular the notation of
reference 3, will be used.

The plant model 1s given by the real linear recurrence equation

x(r+1l) = A(r)x(r) + B(r)u(r) (1)

where x(r), an n vector, is the system state; u(r), an m vector,
is the control, A(r), B(r) are bounded matrices of size nxn and
nxm respectively; and r = 0,1,2... denotes the stage of the
evolution. It is assumed that Iuk(r)l <13 k=1,2,...m3 » = 0,1,....
The initial data are denoted by x_ = X(O) and the target set is

denoted by @ = {x|g(x) € ¢, ¢ 18 a constant}., In the work presented

* Prepared under contract NASw-563 for the NASA,
¥ Research Consultant, Minneapolis-Honeywell Regulator Company,
Minneapolis, Minnesota




here g is assumed to be of quadratic form, that is,
G = {X|X°HX ¢, c>0and H=H!> 0}.
The problem to be solved requires the determination of a

[u(0), u(1),...u(r-1)] to steer the response

control sequence u

x(r) from X, to @ in the minimum number of stages r.

SYNTHESIS
If W(r) is such that W(r+l) = A(r)W(r), r = 0,1,2..., and

W(C) = I, then equation 1 can be rewritten as
r
x(r) = W(r) x, + W(r)J§1W'1(J) B(J-1) u(Jy-1). (2)

A positive definite function
V(x) = x-Hx : (3)
and an error function
E(x) = x*Hx - ¢ (4)
are introduced. The first r > O must be determined such that
E(x) = O for some X(r) = X belonging to the set of attainability
K(r,xo). K(r,x ) is the collection of end points of responses x(r)
which initiate at x_ for all controls [u*(J)] < 1; k = 1,2...m;
J =0,1,... r-1. According to referenée 3,K(r;x0) is a closed,
convex, nonempty subset of R® and therefore at each stage
r > 0 (r < r* = optimum r) there is a unique point
x = x(r) € K(r,xo) which minimizes E(x). When an r, say r*, is
found for which E(x) ¢ O for some x € K(r*,xo) an optimum éontrol
sequence 1is known,
A computational scheme is now devised for finding the

X € K(r,xo) which minimizes V(x) for fixed r > 0. The procedure



for Increasing r 1s obvious.

A parameter t is introduced in equation 2 to yield

(r,8) = () (x, + W (9B(-1u(3-1,8)) (5)

From this equation

L4

f(r,t) = J§lw<r>W'1(s)B<J-1> A(3-1,8).

For the remalning discussion it is assumed that m=l. The re-
striction is easily removed.

Equation 3 is rewritten as
r

x(r,t) = W(r)x, + 2 n(J) u(J-1,t) (7)
, J=1

where h(J) = W(r)Ww 1(J)p(J-1).
V(x(r,t)), and therefore E(x) will be minimized by driving
each u(J-1,t) according to

Ful3-1,8) = 4(3-1,8) = g7 (x(x,t)). (8)

The functions gj—l(x(r,t)) will be selected in an obvious manner

after the followling calculation:

QalQa
<}

LA V(x(r,t)) = 2x(r,t) -Hx(r,t)

Z B(3)i(3-1,t) Hx(r,) (9)
=2 £ u(3-1,t)n(y)-Hx(r,t)
4=1

Then




if -1,t <1
2n(g) mx(r,t) halg-1,%)]
| e 1f u(g-1,%)n(3) Hx(r,t)> O
ﬁ(«j"l:t) = '

0 otherwise, (10)
.'
where each B(“) is a positive constant. Therefore,

v = 2578 ) (n(g) 1x(z,8))2 < 0

J: 0(J-1,t) # 0 (1)

It will now be shown that ﬁ is in fact less than zero except at
x*, the optimum point. Thils then establishes the requires property.
Suppose G(x) = 0 for x interior to K(r,xo). This can
happen only if
u(J-1,t) = - sgn {h(y)-Ex(r,t)}
or '
n(j)-Hx(r,t) = 0
for all j = 0,1,...r {x =0 ¢ K(r,xo). From reference 3 theorem 1

the response to any extremal control, v(J) = sgn{[W'l(J)b(J-ll ﬂo}

is a point on the boundary of K(r,xo). When q_ = -W(r) H x(r,t)

the above control is an extremal control and hence must lead to a

response end point x(r,t) on boundary of K(r,xo). Therefore

V< 0 if x(r,t) is interior to K(r,xo).

For points on the boundary of K(r,xo), V=0 only if

u(J-1,8) = - sgn{h(J) -Hx(r,t)}

or
n(J)-BEx(r,t) = 0

for jJ = 1,2...r. If x(r,t) i1s on the boundary of K(r,xo), then
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according to reference 3 the control which gave rise to x(r,t)
is recessarily an extremal control with g, = [W-l(r)]/ﬂo an
exterior normal to K(r,xo) at the corresponding point x(r,t) on
boundary K(r,xo). Hence for o, = - W(r)H x(r,t) the vector
W)Y W (o) x(r,t) = - H x(z,t)
must be an exterior normal to K(},xo) at x(r,t) on the boundary
of K(r,xo). This can only occur if x(r,t) = x¥*, because only
then 1s Hx a vector orthogonal to the surface‘V(x) = constant.
Therefore V < O unless x = x* and V(x(r,t))—V(x*) as t—>w .
The only change for r = r* is the possibility of x(r*,t)—>0
in K(r*,xo), but in this case the only point of K(r*,xo) at
which ﬁ = 0 is still x* with some possibility that x* is interior
to K(r*,xo). For the targets under consideration x = O is an
interior point of G.
Optimum control can now be found by increasing r one gtep at
a time and finding the point of K(r,xo) where E(x) is a minimum.
When E(x) < O for r = r* an optimum control is known.
The results apply equally well to target sets which are time
varying, that is, G = G(r).

CONCLUSIONS
A method for making corrections to the control required for
time optimal control to convex target sets has been developed.
It was shown that the computation of corrections based on this scheme

will converge.



wd

5 1.
2.
3.

o

]

G-

REFERENCES

Ho, Y. C., "A Successive Approximation Technique for Optimal
Control system subject to input saturation', Trans. ASME J.
of Baslc Engr., March, 1962, pp. 33-41.

Eaton, J. H. "An On Line Solution to Sampled-Data Time
Optimal Control", Jour. of Elec. and Control, October, 1963,

pp. 333-341.

Lee, E. B,, "Recurrence Equations and the Control of Their
Evolution", Jour. of Math. Anal. and App. 1963.



